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The half-range weight function, orthogonality integrals, and completeness 
theorems in the theory of kinetic equations are often not known, or when they 
are, are too complicated to be of much practical use. This suggests the use of 
full-range relations to solve half-range problems, and in this paper we 
investigate the adaptability of such an approach in the theory of one-speed 
neutron transport by a discretized spectral approximation formulated recently. 
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1. I N T R O D U C T I O N  

The half-space problem in the theory of kinetic equations is an important  
and fundamental problem in the understanding of a boundary layer near a 
physical bounding wall. The problem is mathematically difficult for two 
basc reasons. First, the kinetic equations describing the physical process 
cannot usually be solved exactly in most cases, requiring simplifications 
and/or approximations. The solution is generally an approximate one (e.g., 
a truncated series) of an approximate equation. Second, as the exact boun- 
dary condition at the wall cannot be satisfied by an approximate solution, 
the formulation of an appropriate  approximate wall condition is needed. 
This stage is not at all trivial, and can indeed turn out to be as involved as 
the first. Our  main concern in the present numerical adaptat ion of the dis- 
cretized spectral approximation will be the investigation of such wall con- 
ditions to match the A o  N solution. In general, the difficulty of this exercise 
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is increased because the half-range weight function and orthogonality 
relations are either not known (e.g., Fokker-Planek equation) or are too 
complicated to be of much practical use (e.g., neutron transport equation). 
The linear one-speed neutron transport equation occupies, in this context, 
a special position in the theory of kinetic equations, as it happens to be the 
only equation whose half-space solutions have been studied fully and exten- 
sively by the singular eigenfunction technique. 

The main aim of the present paper is to examine, in a systematic 
manner, the possibility of obtaining approximate, converging solutions of 
the half-range (HR) problem--which can be solved exactly only if the HR 
weight function, orthogonality, and completeness relations are fully 
established--using the full-range (FR) weight function, orthogonality, and 
completeness relations. These full-range relations are simpler than the 
corresponding half-range ones and their intelligent use can help obtain 
needed information on the kinetic boundary layer. 

Such an approach was used earlier both in the context of the neutron 
transport equation and the Brownian motion Fokke~Planck equation. In 
the former case, the exit distribution at the boundary has been extensively 
computed by the F u approximation, (1) while for Brownian motion, 
Burschka and Titulaer (2) used the FR weight function in the HR interval 
R+ to predict the Milne extrapolation length. Marshall and Watson (3) 
recently gave a rather involved exact solution of the boundary layer 
problem of the Fokker-Plank equation using Weiner-Hopf methods, while 
Mayya (4) developed an integral equation for the incident distribution of 
Brownian particles on a bounding wall---equivalent in neutron transport to 
the exit distribution from the medium--whose properties he studied 
asymptotically; see also Titulaer (5) for a similar approach. 

In contrast, our approach to the use of FR properties for HR 
problems is more direct, and in Schemes 3 and 4 below a complete solution 
of the HR problem using only FR relations and the HR basis set for 
representation of all incident and exit distributions is given. Even though 
the specific example and numerical results given here are for one-speed 
neutron transport, the methods developed apply to other linear models in 
the theory of kinetic equations, e.g., the Fokker-Planek equation. 

2. THE ~O" N A P P R O X I M A T I O N  

A summary of the discretized spectral approximation in neutron trans- 
port theory is given here; for details see Sengupta and VenkatesanJ 6) The 
neutron transport equation 

~ ( x ,  ~) c c 1 
= ] ~9(x,#')dg' (1) 
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has the exact half-space solution in x >/0 

O~(x,  ,u) = a(vo) e-X/~~ #) + A(v)  e-X/~b(v, t~) dv 

which in the z~O" N approximation becomes (6~ 

(2) 

Here, 

N 

Or(X, ~') = a(Vo) e x/~~ ~,) + y~ a(~,) ~/~' e ~b~(v~,/~) (3) 
i=1 

and 

~b(Vo,#)-cv~ 1 ," __CV~176 l - 1  
2 v o -  # 2 v o -  1 

cvi vi - # -t vi,/~ > 0 (4) 
O~(vi' lt) = 2 ( v i - / -0  2 + e 2 rc~ ( V  i - -  1./) 2 + ,~2' 

is the rational function approximation of the singular eigenfunction 

cv 1 
~(v, #) = 5 - * '  + ~4v) a ( v - ~ )  v - - #  

with 

cv 1 +v  
2(v)=  1 - 2  In 1 - v  

{v i}e (0 ,1 )  is a discretization of the continuous spectrum v ~(0 ,1 )  
obtained as the roots of a set of properly construCted orthogonal 
polynomials that ensures convergence of the sum in Eq. (3) to the integral 
of Eq. (2). Therefore {v;} are a set of Gaussian nodes in (0, 1). Here )~jn~ is 
to be obtained in conformity with the AaN approximation. Inref .  6, this 
was done by requiring that the rational approximation ~b~(v,#) be 
normalized to unity just as the distribution ~b(v,/~) is. Here, however, a dif- 
ferent integral constraint on ~b~(v,/~) will be used to ensure better numerical 
results, e is the imaginary part of v, i.e., v ~ v + ie. This is done to avoid the 
singularity at #---v, and leads to the rational function approximation of 
~b(v,/~),, Eq. (4). ~7) The approximation parameter e is obtained as in 
Sengupta and Venkatesan, ~6) i.e., from the transcendental equation 

I 
-- - -  (5) 

N * ~ ( v )  
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which in turn derives from the equality of the step sequence 

(~N*(V - -  # )  z-- 

1 1 
N*, v-~--~-g <~ # <~ V + 2 N----g 

0, otherwise 

to the Cauchy equivalent, rational sequence 

a ~ ( v - # ) =  
.~(v) (v - #): + ~: 

at # = v. Here 

N *  

1 1 
1 - v + l / ( 2 N ) '  v + ~ - ~ >  1 

1 1 
v + 1/(2N)' v - ~-~ < 0 

N, otherwise 

(6) 

N is the number of terms of the sum in Eq. (3). This sum is the boundary 
layer term, or the transient component of the solution of Eq. (1). In 
Sengupta and Venkatesan,(6) the discretized spectra {vi} U were obtained as 
the roots of a set of orthogonal polynomials in (0, 1) with respect to the 
function 

c # (~+  #) a=Vo(1 - c )  ~/2 
W(~ = 2s176 - c) Vo +----~' 

which is an effective approximation of the HR weight function 

w(#) 
c # 

2(1 - c) (v 0 + #) X ( - # )  

where X(#) is the Case X function, which is related to the Chandrasekhar 
H-function by 

1 
H(#)  = 

(1 --  C) 1/2 (V 0 -~- # ) X ( - - # )  

and hence 

s 

W(p) 2(1--  c) ~/2 #H(#)  
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It is interesting to note that as c ~ 0, v 0 --, 1, X(-k t )  ~ (1 + / 0  -I,  and both 
W(#) and Wr176 tend to c # / 2 ( 1 - c ) .  Because of the constant factor 
c /2 (1-c ) ,  one has the interesting result that orthogonal polynomials, or 
moment equations in (0, 1), with respect to either W(p) or Wr176 
behave in the limit of vanishing scattering like the corresponding 
equations with respect to the FR weight function g in that interval. In 
Eq. (5), r~(v) is either tan 1 [ (1 + v)/~ ] + t an -  1 [ ( 1 - v)/e ] if - 1 ~< v ~< 1, or 
tan ~ ( v / e ) + t a n - ~ [ ( 1 - v ) / e ]  when 0~<v~<l, and is obtained from the 
required normalizations 

6,(v - /~) d~ = 1 or 6~(v - l~) @ = 1 
1 

according as - 1 ~< v ~< 1 or 0 ~< v ~< 1, respectively. In this second HR case, 
z~(v)  = T~(v) in the notation of ref. 6, and it is this HR definition that has 
been used in the calculations of Section 4. 

3. N U M E R I C A L  A D A P T A T I O N  OF THE ~0"  N A P P R O X I M A T I O N  

An effective numerical adaptation of the above theory depends upon a 
reliable determination of the coefficients {a(vi)}~ v when the HR wall 
condition 

~ex(0, kt) = f(/z), /~>0 

is specified. In ref. 6, this was done by a Nystrom-type collocation method, 
where/z was also discretized at the zeros of CN+ 1(#) to get N +  1 equations 
in the N +  1 unknowns {a(vi)}~ v. In this paper, we report the results of 
calculations using three different schemes of generation of Galerkin or 
moment equations from the boundary condition 

Cox(0, ~,) = h + (~ )  + h -  (~ )  (7) 

valid at the wall x = 0, where 

fr ~), 
h +(~') = tO, 

f 0, 
P), 

p > 0  
kt<0 

# > 0  

# < 0  

822/51/'3-4-22 
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In the A o  N approximation, O~(0, it) replaces Oex(0, it) in Eq. (7) for 
Schemes 1 and 2 defined below, and h+(it) and h (it) are given by 

N 

h + (it) = h + (It) = a + (Vo) c/)(v o, It) + ~ a + (vi) (b~(vi, It), 
1 

c v ~ ~ ~ 1 I t<O 
h ( i t ) = - ~  a (vi) v i _ i t ,  

It>O 

where use has been made of the fact that for I t<0 ,  v > 0 ,  
O~(v, p)  = cv/2(v - It), and h (it) is independent of e. We now examine the 
following three different types of approximate boundary conditions at 
x = O :  

Scheme 1. 

Scheme 2. 

Scheme 3. 

It interval: (0, 1) 
Weight function: W(~ 
Moments with respect to: ~b(vj, It), j =  0, 1 ..... N 
Boundary condition: f( i t)  = h + (it) 

It interval: (0, 1) 
Weight function: It 
Moments with respect to: ~b(vj, It), j = 0, 1,..., N 
Boundary condition: f(/~) = h + (it) 

It interval: ( - 1, 1) 
Weight function: It 
Moments with respect to: ~b(-vj, It), j = 0 ,  1 ..... N 
Boundary condition: ~cx(O, It) = h~ + (it) + h -  (it) 

While in Scheme 1 the weight function is our simple approximation W (~ to 
the HR function, in Schemes 2 and 3 it is the FR function It. With respect 
to Scheme 3, the following is to be noted. Let {{~o+(it)}~, Co(it)} be a 
complete set of functions in L 2 ( - - a ,  a) such that they are orthogonal in 
( - a ,  a) with respect to w(#), i.e., 

(q~+, P f  )~ = N + 6 u ,  

where (f, g)w = S ~ a wfg dit. 
complete in (0, a), i.e., if 

(qL--, q~j )w = N~- 5~j 

(~?, ~;)w=0 

If half of the functions 

i=0 

{~0o, {~o?}?}  are 
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then we can write with respect to the FR weight function and ~of applied 
to the Scheme 3 boundary condition 

Y= ai(~ o+, <Pf)w = (f, <Pf)w + + Y, a/(~P +, <Pf)w (8) 

where 

( f  g ) w = ( f  g)~ + ( f  g)~ 

and 

(f, g)w = wfg d#, (f, g)+w = wfg d# 
- -a  

are HR integrals with respect to the FR weight function w. Now, since 

(q,+, ~o7 )w = o = (~o2, ~o 7 )~+ + (v,, +, ~o7 );- 

i.e., 

(~o, +, + / ) #  = - ( ~ o 2 ,  ~o 7 )~ (9) 

Eq. (8) becomes 

N 

(f, <pf)+ = y= a/(<p +, qgj )+, j = 0 ,  1,..., N (10) 
i ~ O  

However, in the A f y  N approximation, with 

~o + = < (~ , ,  #), ~o7 = ~( - ~+, #) 

r and ~0f have different forms and Eq. (9) does not apply. In the AG N 

approximation, therefore, Scheme 3 is represented by Eq. (8), and not by 
Eq. (10). 

The notion of a different set of expansion coefficients {a + } and {a 7 } 
for # in the respective positive and negative half-ranges needs some 
comment. With regard to the Fokker-Planck equation, such a "bimodal 
ansatz" has often been employed. Harris, (s) for example, remarks, 
"experience has shown that those approximations which explicitly incor- 
porates the half-range structure into the character of the solution generally 
lead to a more accurate description of the boundary layer than other 
approaches. This is effected by looking for a solution that is discontinuous 
at v =0"; see also Titulaer (9) for similar remarks on the desirability of 
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treating the positive and negative half-ranges separately. Thus, let us 
consider 

I h + (/~) = ~ a?~P/+ (#)' p > O  
h (# )=  

h (p) = ~ aF~p+(/z), # < 0  

( l l a )  

( l lb)  

Then, assuming that the HR properties are fully established with a weight 
W(/~), Eq. ( l l a )  leads to 

(f, %+ ) ~v = ~ a?  (q~+, ~o+ ) ~v, j=O,  1 .... (12a) 

as the unique solution of the HR problem. For Eq. ( l lb) ,  {a~-} can be 
obtained using the FR relations only so as to link the negative HR ( - a ,  0) 
to the positive HR (0, a) on which the boundary function is specified. Thus, 
{a i } are obtained from Eq. (10), 

( f  r )+ = ~ a~ (q~+, q~f )+, j = 0, 1 .... (12b) 

It is of course true that Eqs. (12a) and (12b) for the coefficients {a/+ } and 
{a/- } are two distinct equations whose solutions are not, a priori, the same. 
For the neutron transport equation, Eq. (8) becomes 

#f(p)(9(-a,l~)d#=a-(Vo)J(Vo, - a ) +  A-(v)J(v,  -a )  dv, 

a=VoUV~(O, 1) (13) 

for the coefficients a , A , where 

f 
O 

J(Vo, - , r )  = - ur ~) r  ~) d~ 
- - 1  

=I~ ur u) ~ ( - ~ ,  u) du 

l n - -  
2 % -  1 

C2Vo v' 1 ( 
4 Vo+V' voln 

f f = V  0 

Vo _v, lnl+V'~ 
Vo-1 v' ] '  

~r = v 'e  (0, 1) 
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fO o~(v, - ~ )  = - uO(v, ~)  0 ( - , r ,  u)  d~ 
--1 

f2 = ~ ( v ,  ~)  0 ( - o ,  ~)  d~ 

C2VOV l ( VO 1 "ql- V> 
Vo In - v In , 

4 Vo+V Vo-1 v ' 
O'=V 0 

,)]+v 
2(v+v ' )  1 - ~  v ' m ~ + v l n  v , ~ = v ' ~ ( 0 , 1 )  

and J(Vo, - v ) = J ( v ,  -Vo). Equations (13) are not the same as the usual 
equations for a+(Vo) and A+(v) obtained from the HR orthogonality of 
{0(Vo), 0(v), 0~<v~< 1} with respect to the HR weight W(/~). For the ACT N 
approximation, Eq. (13) becomes 

= a-(Vo)J(Vo, --tz)+~a-(vi)J~(vi,--tr),  a =  {Vo, {vj}~} (14) 

where 

f 
O 

~(vi;  a) = - u0,(vi, ~) 0 ( - a ,  ~) dtz 
1 

= J ( v i ,  - ~r) 

f2 
Equation (14) is the working equation for Scheme 3. For the purpose of 
comparison, the relations 

f~ ~f(u) 0(-~, ~) au 
N 1 

=a (Vo)J (Vo , -Cr )+~a  (vi)fo~e(vi,~)O(--~,~)d~, 
1 

a =  {v o, {vj}~ v} 

were also used to obtain the coefficients, but were found to give unsatisfac- 
tory results and were not investigated further. We note that the coefficients 
of Schemes 1 and 2 are e-dependent, while those of Scheme 3 are not. 
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In the #-weighted integrals of Schemes 2 and 3, 2~/n, in Eq. (4) is 
obtained by requiring O~(vi, I~) to satisfy 

f l  1 #~e(~i, [~) ~(VO, ~) d# =0 (15) 

to give 

~8 X 
- -  = - -  ( 1 6 )  
7z. Y 

where 

X =  
c v ~ (  v o + l  1 + v~'] 

2(Vo-- vi) vo in - vi In Vo vi / 

1 cv~ 

2 (Vo - vi) 2 + e 2 

x [  v~176 vo-V~ 1 +~ (v2-v~ L~(vi) 

+ vocT~(vi)] (17a) 

y= 1 
l {voe [ln v~_ l +~ L,(vi)l 

( V o -  vi) ~ + ~2 

-- (v 2 - VoVi + el) T,(vi) } (17b) 

and 

L,(v)=ln (1-v)2+ez T~(v)=tan 1-V+tan l l - v  
V2 _~_ g2 ~ 8 8 

while for Scheme 1, 28/rc~ was obtained from 

;o I(~ = W(~ ~b~(v~, #) ~b(vo, #) d# = 0 8q-\ l: (18) 

to give in eq. (16) 

CV/ 
X =  ~-  [(Vo + v,) Ao+ + (Vo - v,) A o + BoL,(v,) + 2eCo T,(v,)] 

Y= 2Bo T~(vi) - e[Ao+ - Ao_ + CoL.(vt)] 
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Ao + _ Vo-~ In Vo+ 1 
(y 0 ..~ yi)2 + ~2 VO 

_ V o + C ~  % -  1 
Ao_ (%_vi)Z+e21n Vo 

8~ r(v~+ ~ ) ~  _ v g ( v  ~, _ ~2) _ ~ v , ( v g  - v ~, - ~)] 

1 
Co = 7 [2v,v~ + ~(v 2 + v~ + e2)] 

/'o 

Zlo = [(Vo + vi) 2 + ~2] [(% _ v,)2 + E2] 

The matrix elements for Schemes 1 and 3 are given in ref. 6 and by 
J(vi ,  -~r) above, respectively; those for Scheme 2 are as follows: 

f •  ~r u) du 

= (2)2 VoW~ ,) 

f •  ~(~(Vo, ~) (~,(v,, ~) d~ 

CVo f[-cvt 2~] Vo 
- 2 ~ L T ~ v ' - v o l + ~ <  v o l n - -  

V0-- 1 

+ Vo~ (VoV,-~2-v~,) L(v,) E ( v o - v , ) : + d ]  -~ 
7Z e 

f •  ~O(Vo, ~) O(vj, ~) 

2 Vo-VjL ~ voln + v j l n  v o -  1 vj / l  
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{c f f  cv, ~1 v, = v j ~ L T ( v  , vj)+e v j l n l _ v j  

1 [-cvi 2 2~] 
Z L,(v,) 

-I- 1~('9j) (Y i -  Yj) ~- ~ Z [ (Y i -  yj)2 ~_ 

where 

cvj 1 + vj 
2(vj) = 1 - ~ - I n  1 - v-----~ 

A scheme linking the two sets of coefficients {a~ + } and {ae- } not been 
investigated in this paper is, in the notation of the discussions following 
Scheme 3, as follows: 

Scheme 4. # interval: ( - a ,  a) 
Weight function: w(#) 
Moments with respect to: r 
Boundary condition: ~9ex(0, V) = h + (p) + h -  (#) 

According to this scheme, one has 

a,(~P, .+, 4o7 )w = ( f  4~ )~+ + ~ a7 (~P,+, 4o7 )U 
i i 

and hence, using the orthogonality of the basis functions in FR, 

where 

Obviously, 

N 

Njaj=  (f, ~o:+)w+ + ~ a T N ~ ,  j = 0 , 1  ..... N 
i = 1  

N +=(~p~+, + + ~oj )w - N +  for i = j  

N•-  N U + N~ (19) aj=a~- + aj , - + 
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and there follows 

(f, ~of) + =Nj(a~- + a f ) + Z a  ~ N + , 
i 

j =  0, 1,..., N 

N 

a~N7 + aj N+ = Z (a? N+ + a~N[  ), 
i r  

j = 0 ,  1,..., N 

For the AO N approximation, since the boundary layer integral is 
replaced by a sum, the respective coefficients do not follow relation (19) 
except for j = 0. In this approximation, therefore, we get the single relation 
obtained with r i.e., the following equation for a+(vo): 

N(vo)[a + (Vo) + a-  (%)] = fo 

where 

a/z =--~- 
N(vo) \ 2 J 0 1 ( V O - - / Z )  2 kY 2 -  

N 

/Zf(/Z) r d/z-  ~ a-(vi) J(vi,  Vo) (20) 
i = 0  

i )  

H 
N(Vo) [-a + (%) + a -  (Vo)] = Jo 

where 

and 

Use of a=a  + + a -  reduces Eq. (20) to an equation for a+(vo), 

N 

/Zf(/Z) r d/z-  ~ aT(vi) J(vi, Vo) 
i = 0  

vo) 2 j # d/z= - l n  
N+(v~ = (Vo-/Z) 2 1 % -  1 

N -  (Vo) = /Z d~ = - In 
l(Vo /z)2 1 Vo 

= - ~r Vo) 

While this scheme has not been investigated in this paper, we note its 
possibility as a natural complement of Scheme 3, and observe that 
Schemes 3 and 4 together constitures a complete solution of the HR 

Using f =  Z a+cP +, one finally gets the required relation between the two 
sets of coefficients {a + } and {a 7 } on the positive and negative intervals, 
respectively: 



670 Sengupta 

problem by FR methods: apply Scheme 3 to obtain the aT, followed by 
Eq. (20) of Scheme 4 for the a/+. This determines the function h(/~) for both 
the half-intervals # <~ 0, thereby giving the complete solution of the half- 
range problem. 

4. N U M E R I C A L  R E S U L T S  

We consider in this section the following three problems for the half- 
space x >/0. 

P r o b l e m  A: Equation: #~b~+ ~b =�89 1 ~b(x, #') dp' 
Boundary condition: ~b(0, #) = 0,/~/> 0 
Asymptotic condition: q/--, eX/V~ - r e ,  #), x ~ oo 

P r o b l e m  B: Equation: #~b~ + ~b = �89 ~ 1 ~b(x, #') d#' + q 
Boundary condition: 0(0, #) = 1 - q, # > 0 
Asymptotic condition: ~b --, q/(1 ~ c), x --* oo 

By Problems Be and B1 we will denote the special cases q = 0 and q = 1, 
respectively, of Problem B. Problem A is the standard source-free Milne 
problem, while Problems B o and B~ have been considered by Grandjean 
and Siewert (t) by the F u method, assuming a polynomial form of the 
exiting flux. We study both problems here by Schemes 1-3 by the following 
four choices of collocation points: zeros of orthogonal polynomials in (0, 1) 
with respect to specified weight function (choice 1), zeros of shifted 
Legendre polynomials (choice2), equally spaced points (choice 3), and 
zeros of shifted Chebyshev polynomials (choice 4). It was found, in general, 
that choices 1 and 2 gave better results than choices 3 and 4 for N~< 10 (the 
range investigated in this paper). We will restrict our further considerations 
to the first two choices. 

Tables I-V show the leakage and extrapolated endpoints for 
problems A, Be, and B~ by Schemes 1 and 2 and nodes selected according 
to choices 1 and 2, while Tables VI-VIII display the same results according 
to Scheme 3. We note the following points of interest. 

1. The results of Schemes 1 and 2 are qualitatively similar 
(Tables I-V). The numerical values do not converge to the exact results for 
the values of N studied, but should probably display an oscillatory charac- 
ter converging to the exact value for larger N. Though it has not been 
possible to test this so far because of computational limitations, the results 
shown appear to be suggestive of this. This trend would also imply that N 
would take on fairly large values for a properly converging behavior. 

These remarks apply not only to a "sum" result such as the leakage, 
but also to an individual quantity such as the coefficient a+(vo),  i.e., the 
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T a b l e  I. L e a k a g e  f o r  P r o b l e m  A a 

c N = 2 N = 4 N = 6 N = 8 N = 10 Exact 

0.2 S1 C1 0,8229 0.8260 0.8270 0 . 8 2 7 5  0.8279 l 
C2 0.8225 0.8263 0.8272 0 . 8 2 7 6  0.8279 1 0.8280 

$2 C1 0.8230 0.8261 0.8270 0 . 8 2 7 5  0.8279 
C2 0.8227 0.8264 0 . 8 2 7 2  0.8276 0.8279 

0.4 S1 C1 0.6514 0 . 6 5 7 9  0.6602 0.6614 0.6623 C 
C2 0.6504 0.6584 0 . 6 6 0 5  0 . 6 6 1 6  0.6623 1 0.6627 

$2 C1 0.6518 0.6581 0.6603 0.6615 0.6623 
C2 0.6511 0.6587 0 . 6 6 0 6  0 . 6 6 1 7  0.6624 

0.6 S1 C1 0.5020 0.5115 0.5145 0.5161 0.5169 
C2 0.4994 0.5118 0.5149 0.5162 0.5171 1 0.5170 

$2 C1 0.5030 0 . 5 1 2 0  0 . 5 1 4 9  0 . 5 1 6 3  0.5170 
C2 0.5012 0.5124 0.5152 0.5164 0.5172 

0.8 S1 C1 0.3577 0.3667 0.3695 0 . 3 7 0 9  0.3718 ( 
C2 0.3535 0 . 3 6 6 9  0.3698 0.3711 0.3719 

$2 CI 0.3597 0.3677 0.3701 0.3712 0.3719 0.3713 
C2 0.3574 0.3681 0.3704 0.3714 0.3720 

0.9 SI C1 0.2663 0.2736 0.2759 0.2771 0.2782 ( 
C2 0.2621 0.2737 0.2762 0 . 2 7 7 3  0.2779 1 0.2772 

$2 C1 0.2692 0.2748 0 . 2 7 6 5  0.2774 0.2778 
C2 0.2673 0.2751 0.2768 0 . 2 7 7 5  0.2779 

~' S1, $2, Schemes 1, 2; C1, C2, choices 1, 2. 

Table II. Extrapolation Length for Problem A n 

c N = 2 N = 4 N = 6 N = 8 N = 10 E x a c t  

0.2 S1 3.9241 }'3.9255 
$2 3.9288 3.9261 3.9254 3.9251 3.9249 

0.4 S1 1.8254 ~" 1.8263 
$2 1.8364 1.8294 1.8276 1.8266 1.8260 

0.6 SI 1.1930 J'1.1925 
$2 1.2117 1.1979 1.1946 1.1931 1.1922 

0.8 S1 0.8899 ~'0.8891 
$2 0.9183 0.8958 0.8910 0.8889 0.8877 

0.9 SI 0.7904 ~" 
$2 0.8263 0.7973 0 . 7 9 1 3  0.7887 0.7871 ~ 0.7896 

a S l, $2, Schemes 1, 2. 



672 Sengupta 

T a b l e  III. L e a k a g e  for  P r o b l e m  Bo a 

c N = 2 N = 4 N = 6 N = 8 N = 10 Exact 

0.2 

0.4 

0.6 

0.8 

0.9 

S1 C1 0.1235 0.07646 0.06203 0,05406 0.04852 
C2 0.1211 0.07043 0.05842 0,05208 0.04749 

$2 C1 0.1221 0.07580 0.06160 0,05378 0.04835 
C2 0.1194 0.06981 0.05805 0.05183 0.04730 

S1 C1 0.1446 0.09709 0.08069 0.07122 0.06508 
C2 0.1430 0.09205 0.07805 0.06997 0.06439 

$2 C1 0.1417 0.09575 0.07988 0.07074 0.06478 
C2 0.1393 0.09070 0.07734 0.06951 0.06408 

S1 C1 0.1643 0.1215 0.1084 0.1019 0.09825 
C2 0.1690 0.1193 0.1068 0.1010 0.09759 

$2 C1 0.1602 0.1197 0.1073 0.1013 0.09794 
C2 0.1627 0.1174 0.1058 0.1005 0.09730 

$1 C1 0.2074 0.1823 0.1751 0.1715 0.1694 
C2 0.2147 0.1813 0.1741 0.1709 0.1691 

$2 C1 0.2022 0.1802 0.1740 0.1710 0.1694 
C2 0.2061 0.1790 0.1731 0.1705 0.1690 

S1 C1 0.2606 0.2457 0.2413 0.2390 0.2377 
C2 0.2668 0.2454 0.2407 0.2387 0.2375 

$2 C1 0.2551 0.2435 0.2403 0.2387 0.2378 
C2 0.2577 0.2429 0.2398 0.2384 0.2376 

0.02313 

0.05365 

I 0.09735 

I 0.1710 

0.2390 

S1, $2, Schemes 1, 2; C1, C2, choices 1, 2. 

Table IV. Extrapolation Length for Problems B0 and B1 a 

c N = 2 N = 4 N = 6 N = 8 N = 10 Exact 

0.2 S1 5.5812 
$2 5.5833 5.5845 5.5836 5.5831 5.5827 ~ 5.5825 

0.4 S1 2.1054 t 
$2 2.1213 2.1117 2.1091 2.1075 2.1065 2.1058 ( 

0.6 $1 1.2347 
$2 1.2613 1.2419 1.2370 1.2348 1,2334 ~ 1.2337 

0.8 S1 0.8791 I 
$2 0.9163 0.8866 0.8803 0.8774 0,8758 0.8779 

k 

0.9 S1 0.7764 
$2 0.8204 0.7846 0.7772 0.7739 0.7720 ~ 0.7752 

S1, $2, Schemes 1, 2. 
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Table V. Leakage for Problem B 1 

c N = 2  N = 4  N = 6  N = 8  N=10  Exact 

0.2 

0.4 

0.6 

0.8 

0.9 

$1 C1 0.4706 0 . 5 2 9 4  0 . 5 4 7 5  0 . 5 5 7 5  0.5643 
C2 0.4737 0 . 5 3 7 0  0 . 5 5 2 0  0 . 5 5 9 9  0.5656 

$2 C1 0.4723 0.5303 0.5480 0 . 5 5 7 8  0.5646 
C2 0.4758 0.5373 0 . 5 5 2 4  0 . 5 6 0 2  0.5659 

S1 C1 0.5923 0.6715 0 . 6 9 8 8  0.7146 0.7249 
C2 0.5950 0 . 6 7 9 9  0 . 7 0 3 2  0 . 7 1 6 7  0.7260 

$2 C1 0.5972 0 . 6 7 3 4  0 . 7 0 0 2  0 . 7 1 5 4  0.7254 
C2 0.6011 0.6821 0.7044 0 . 7 1 7 5  0.7265 

S1 C1 0.8391 0.9463 0.9791 0.9952 1.0074 
C2 0.8276 0 . 9 5 1 9  0 . 9 8 3 0  0.9975 1.0060 

$2 C1 0.8496 0 . 9 5 0 7  0 . 9 8 1 7  0.9966 1.0051 
C2 0.8431 0.9566 0 . 9 8 5 4  0.9988 1.0067 

S1 C1 1.4629 1.5883 1.6244 1.6425 1.6529 
C2 1.4265 1.5934 1.6293 1.6453 1.6546 

$2 C1 1.4890 1.5991 1.6302 1.6449 1.6531 
C2 1.4696 1.6052 1.6344 1.6475 1.6550 

S1 C1 2.3936 2.5427 2.5866 2.6097 2.6299 
C2 2.3317 2.5475 2.5929 2.6131 2.6248 

$2 C1 2.4856 2.5646 2 . 5 9 7 4  2 . 6 1 3 0  2.6217 
C2 2.4229 2.5712 2.6021 2.6158 2.6238 

0.5961 

0.7439 

I 1.0066 

I 1.6453 

2.6099 

a $1, $2, Schemes 1, 2; C1, C2, choices 1, 2. 

Table VI. Leakage and a (v0) for Problem A by Scheme 3 

c N = 2 N = 4 N = 6 N = 8 N = 10 Exact 

0.2 Leakage 0.8293 0.8293 0.8293 0.8293 0.8293 0.8280 
a (Vo) 0.0015 0.0239 0.2016 2.2183 30 .1805  -0,00039 

0.4 Leakage 0.6636 0.6636 0.6636 0.6636 0.6636 0.6627 
a-(vo) -0.0237 0.0091 0.2092 1.9345 19 .2966  -0.0273 

0.6 Leakage 0.5171 0.5171 0.5171 0.5171 0.5171 0.5170 
a-(vo) -0.1075 --0.0960 -0.0513 0.1586 1.2770 -0.1149 

0.8 Leakage 0.3713 0.3713 0.3713 0.3713 0.3713 0.3713 
a (%) -0.2790 -0.2785 -0.2759 --0.2692 -0.2509 --0.2827 

0.9 Leakage 0.2772 0.2772 0.2772 0.2772 0.2772 0.2772 
a-(vo) --0.4346 -0.4349 --0.4349 --0.4346 -0.4340 -0.4362 
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Table VII. Leakage and a (Vo) for Problem Bo by Scheme 3 

c N = 2 N = 4 N = 6 N = 8 N = 10 Exact 

0.2 Leakage 0.02312 0.02314 0.02313 0.02313 0.02313 0.02313 
a (Vo) -0.00776 -0.2512 -2.0686 -22.2252 -297.3231 0.00753 

0.4 Leakage 0.05365 0.05367 0.05367 0.05367 0.05367 0.05367 
a-(vo) 0.2304 0.05821 -0.9133 -9.1082 -90.6294 0.2510 

0.6 Leakage 0.09734 0.09736 0.09736 0.09736 0.09736 0.09736 
a (%) 0.6171 0.5896 0.4595 -0.1540 -3.3971 0~6531 

0.8 Leakage 0.1709 0.1709 0.1709 0.1709 0.1709 0.1709 
a-(vo) 1.0598 1.0627 1.0583 1.0454 1.0105 1.0719 

0.9 Leakage 0.2390 0.2390 0.2390 0.2390 0.2390 0.2390 
a (Vo) 1.3269 1.3287 1.3288 1.3284 1.3275 1.3309 

Milne extrapolated length, calculated by Scheme 2. In Scheme 1, 2/7r is 
chosen so as to satisfy Eq. (18) and a+(Vo) is given" simply by 

a+(vo) = W~~ f ( # )  ~b(vo, #) d~ We~ tb2(Vo, #) d/~ 

and is therefore constant with N. For problems Bo and B1 the extrapolated 
length was calculated as follows: 

Problem Bo: Zo = Vo ln(2/a + ) where the exact value of a + (Vo), given 
by 

2 1 
a+(Vo) = 

cvo X(vo) 
is a positive quantity. 

Table VIII. Leakage and for a - (vo)  for Problem B 1 by Scheme 3 

c N = 2  N = 4  N = 6  N = 8  N =  10 Exact 

0.2 Leakage 0.5961 0.5961 0.5961 0.5961 0.596t 0.5961 
a-(vo) -0.3534 -1.0957 -8.1578 -90.2158 -1230.05 -0.0094 

0.4 Leakage 0.7439 0.7439 0.7439 0.7439 0.7439 0.7439 
a-(vo) -0.7682 -1.4170 -6.3825 -49.1637 --480.264 -0.4183 

0.6 Leakage 1.0066 1.0066 1.0066 1.0066 1.0066 1.0066 
a-(vo) --1.8709 -2.0689 --2.9791 -7.2308 -29.7884 -1.6328 

0.8 Leakage 1.6453 1.6453 1.6453 1.6453 1.6453 1.6453 
a - (Vo) -- 5.5088 -- 5.4824 - 5.5298 - 5.6803 - 6.0922 - 5.3594 

0.9 Leakage 2.6098 2.6099 2.6099 2.6099 2.6099 2.6099 
a (%) -13.4230 - 1 3 . 3 6 3 9  -13.3548 -13.3612 -13.3813 --13.3091 
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Problem BI: Z o = v o l n ( 2 / ( 1 - c )  la+l) where the exact a+(vo) is 
negative, 

Thus, 

a~(vo)  
2 1 

c(1-c) VoX(Vo) 

(1 - c) la + (Vo)lB, = a  + (vo) lBo 

and the two extrapolated endpoints of problems B o and B 1 are identical. 
The above results suggest that the FR relations can be used to get 

accurate HR results, though this would require inverting fairly large 
matrices. This coincides with the main conclusions of Burschka and 
Titulaer ~2) in the context of the Fokker-Planck equation where the HR 
weight function is unknown. These authors find that their calculations do 
not converge even for N = 140, and use empirical extrapolation to arrive at 
a "converged" Milne extrapolation length. 

With regard to the choice of nodes for Schemes 1 and 2, there does not 
appear to be any particular overall preference shown in Tables I-V. 

2. Scheme 3 gives quite a different picture altogether. Here con- 
vergence for a "sum" quantity such as leakage can be astonishingly rapid, 
even in spite of the low-c cases in problem A, which remain unexplained. 
Use of the full integration range ( -  1, 1) with the FR complete set of eigen- 
functions--half as the basis expansion set, and the other half as the 
moment functions--is probably responsible for this very different behavior 
as compared to the other two schemes. However, the individual coefficient 
a (vo) calculated by Scheme 3 bears, as expected from the discussions of the 
previous section, little relation to the Milne extrapolation length. In fact, in 
Tables VI-VIII, the coefficient a -  is shown, rather than Zo, to explicitly 
demonstrate the sign changes that take place especially for low values of c. 
This leads to the very important conclusion that although Scheme 3 
generally produces very satisfactory "sum" results, it fails completely to 
predict a physically meaningful component of this sum. Remembering that 
the basis functions of this scheme are simply the discretized versions of the 
exact nonsingular ~b(v, #), v > 0, /~ < 0, unlike the situation in Schemes 1 
and 2, which require ~b~(v, #), it can be concluded that this limitation of the 
scheme is due to the particular adoption of the FR condition that is used in 
place of the HR ones. A further criticism that follows from the above is that 
since this scheme leaves e undetermined, that is, since it employs explicitly 
the exiting flux only, it is unsuited for obtaining the flux inside the medium 
for /~ > 0. It is also found that the numerical results of Scheme 3 are 
insensitive to the choice of nodes to 6-7 significant figures. 



676 Sengupta 

It is therefore possible to summarize our findings as follows. Scheme 3, 
which has essentially been used by Siewert and co-workers in the FN 
method, is good for the exit distribution, but fails in the interval/t > 0. In 
this range Scheme2 appears promising; however, some means of 
accelerating its rate of convergence is necessary if it is to be used profitably. 
Scheme ~ - n o t  used in this work because it cannot be applied to the 
neutron transport problem due to the approximation of the basis ~b(v, #) by 
~b,(v~, #)--used in conjunction with Scheme 3, represents our solution of 
the half-range problem, when its orthogonality relations are unknown, in 
terms of the corresponding full-range properties. Problems having a 
denumerable basis set are not limited by the above restriction and are 
typical candidates for the application of this FR solution of their HR 
problems, e.g., the Fokker-Planck equation for Brownian motion referred 
to in this paper. 
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NOTE ADDED IN PROOF 

In schemes employing full range weight function, it appears more 
appropriate to use the positive zeros of full range orthogonal polynomials 
as collocation points rather than the zeros of shifted polynomials as done 
here. 
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